A computational fluid–structure interaction model to predict the biomechanical properties of the artificial functionally graded aorta

نویسندگان

  • Arezoo Khosravi
  • Milad Salimi Bani
  • Hossein Bahreinizade
  • Alireza Karimi
چکیده

In the present study, three layers of the ascending aorta in respect to the time and space at various blood pressures have been simulated. Two well-known commercial finite element (FE) software have used to be able to provide a range of reliable numerical results while independent on the software type. The radial displacement compared with the time as well as the peripheral stress and von Mises stress of the aorta have calculated. The aorta model was validated using the differential quadrature method (DQM) solution and, then, in order to design functionally graded materials (FGMs) with different heterogeneous indexes for the artificial vessel, two different materials have been employed. Fluid-structure interaction (FSI) simulation has been carried out on the FGM and a natural vessel of the human body. The heterogeneous index defines the variation of the length in a function. The blood pressure was considered to be a function of both the time and location. Finally, the response characteristics of functionally graded biomaterials (FGBMs) models with different values of heterogeneous material parameters were determined and compared with the behaviour of a natural vessel. The results showed a very good agreement between the numerical findings of the FGM materials and that of the natural vessel. The findings of the present study may have implications not only to understand the performance of different FGMs in bearing the stress and deformation in comparison with the natural human vessels, but also to provide information for the biomaterials expert to be able to select a suitable material as an implant for the aorta.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid-structure Interaction Vibration Analysis of Vertical Cylindrical Containers with Elastic Bottom Plate Made of Functionally Graded Materials

In the present paper a method is proposed to investigate the free vibration of a partially liquid-filled cylindrical tank. The mechanical properties of the container are assumed to change continuously along the thickness according to volume fraction Power-law, Sigmoid or Exponential distribution. The liquid is supposed to be incompressible and in viscid and its velocity potential is formulated ...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

Springbackward Phenomenon of a Transversely Isotropic Functionally Graded Composite Cylindrical Shell

This study provides an approach to predict the springback phenomenon during post-solidification cooling in a functionally graded hybrid composite cylindrical shell with a transverse isotropic structure. Here, the material properties are given with a general parabolic power-law function. During the theoretical analysis, an appropriate transformation is introduced in the equilibrium equation, whi...

متن کامل

Buckling Behaviors of Symmetric and Antisymmetric Functionally Graded Beams

The present study investigates buckling characteristics of both nonlinear symmetric power and sigmoid functionally graded (FG) beams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by the sigmoid-law distribution (S-FGM), and the symmetric power function (SP-FGM). These functions have smooth variation of properties across the boundary rather tha...

متن کامل

A Rapidly Convergent Nonlinear Transfinite Element Procedure for Transient Thermoelastic Analysis of Temperature-Dependent Functionally Graded Cylinders

In the present paper, the nonlinear transfinite element procedure recently published by the author is improved by introducing an enhanced convergence criterion to significantly reduce the computational run-times. It is known that transformation techniques have been developed mainly for linear systems, only. Due to using a huge number of time steps, employing the conventional time integration me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2016